3.86 \(\int \frac {1}{(a+b x^2)^{3/2} (c+d x^2)} \, dx\)

Optimal. Leaf size=79 \[ \frac {b x}{a \sqrt {a+b x^2} (b c-a d)}-\frac {d \tanh ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} (b c-a d)^{3/2}} \]

[Out]

-d*arctanh(x*(-a*d+b*c)^(1/2)/c^(1/2)/(b*x^2+a)^(1/2))/(-a*d+b*c)^(3/2)/c^(1/2)+b*x/a/(-a*d+b*c)/(b*x^2+a)^(1/
2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {382, 377, 208} \[ \frac {b x}{a \sqrt {a+b x^2} (b c-a d)}-\frac {d \tanh ^{-1}\left (\frac {x \sqrt {b c-a d}}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} (b c-a d)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^2)^(3/2)*(c + d*x^2)),x]

[Out]

(b*x)/(a*(b*c - a*d)*Sqrt[a + b*x^2]) - (d*ArcTanh[(Sqrt[b*c - a*d]*x)/(Sqrt[c]*Sqrt[a + b*x^2])])/(Sqrt[c]*(b
*c - a*d)^(3/2))

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 382

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a*d
)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && EqQ[
n*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1]) && NeQ[p, -1]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b x^2\right )^{3/2} \left (c+d x^2\right )} \, dx &=\frac {b x}{a (b c-a d) \sqrt {a+b x^2}}-\frac {d \int \frac {1}{\sqrt {a+b x^2} \left (c+d x^2\right )} \, dx}{b c-a d}\\ &=\frac {b x}{a (b c-a d) \sqrt {a+b x^2}}-\frac {d \operatorname {Subst}\left (\int \frac {1}{c-(b c-a d) x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right )}{b c-a d}\\ &=\frac {b x}{a (b c-a d) \sqrt {a+b x^2}}-\frac {d \tanh ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {c} \sqrt {a+b x^2}}\right )}{\sqrt {c} (b c-a d)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.72, size = 309, normalized size = 3.91 \[ \frac {x \left (2 d x^2 \left (\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}\right )^{5/2} \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};\frac {(b c-a d) x^2}{c \left (b x^2+a\right )}\right )+2 c \left (\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}\right )^{5/2} \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};\frac {(b c-a d) x^2}{c \left (b x^2+a\right )}\right )-10 d x^2 \sqrt {\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}}-15 c \sqrt {\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}}+10 d x^2 \tanh ^{-1}\left (\sqrt {\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}}\right )+15 c \tanh ^{-1}\left (\sqrt {\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}}\right )\right )}{5 c^2 \left (a+b x^2\right )^{3/2} \left (\frac {x^2 (b c-a d)}{c \left (a+b x^2\right )}\right )^{3/2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((a + b*x^2)^(3/2)*(c + d*x^2)),x]

[Out]

(x*(-15*c*Sqrt[((b*c - a*d)*x^2)/(c*(a + b*x^2))] - 10*d*x^2*Sqrt[((b*c - a*d)*x^2)/(c*(a + b*x^2))] + 15*c*Ar
cTanh[Sqrt[((b*c - a*d)*x^2)/(c*(a + b*x^2))]] + 10*d*x^2*ArcTanh[Sqrt[((b*c - a*d)*x^2)/(c*(a + b*x^2))]] + 2
*c*(((b*c - a*d)*x^2)/(c*(a + b*x^2)))^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, ((b*c - a*d)*x^2)/(c*(a + b*x^2))]
 + 2*d*x^2*(((b*c - a*d)*x^2)/(c*(a + b*x^2)))^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, ((b*c - a*d)*x^2)/(c*(a +
b*x^2))]))/(5*c^2*(((b*c - a*d)*x^2)/(c*(a + b*x^2)))^(3/2)*(a + b*x^2)^(3/2))

________________________________________________________________________________________

fricas [B]  time = 1.07, size = 441, normalized size = 5.58 \[ \left [\frac {4 \, {\left (b^{2} c^{2} - a b c d\right )} \sqrt {b x^{2} + a} x - {\left (a b d x^{2} + a^{2} d\right )} \sqrt {b c^{2} - a c d} \log \left (\frac {{\left (8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} + 2 \, {\left (4 \, a b c^{2} - 3 \, a^{2} c d\right )} x^{2} + 4 \, {\left ({\left (2 \, b c - a d\right )} x^{3} + a c x\right )} \sqrt {b c^{2} - a c d} \sqrt {b x^{2} + a}}{d^{2} x^{4} + 2 \, c d x^{2} + c^{2}}\right )}{4 \, {\left (a^{2} b^{2} c^{3} - 2 \, a^{3} b c^{2} d + a^{4} c d^{2} + {\left (a b^{3} c^{3} - 2 \, a^{2} b^{2} c^{2} d + a^{3} b c d^{2}\right )} x^{2}\right )}}, \frac {2 \, {\left (b^{2} c^{2} - a b c d\right )} \sqrt {b x^{2} + a} x + {\left (a b d x^{2} + a^{2} d\right )} \sqrt {-b c^{2} + a c d} \arctan \left (\frac {\sqrt {-b c^{2} + a c d} {\left ({\left (2 \, b c - a d\right )} x^{2} + a c\right )} \sqrt {b x^{2} + a}}{2 \, {\left ({\left (b^{2} c^{2} - a b c d\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right )}{2 \, {\left (a^{2} b^{2} c^{3} - 2 \, a^{3} b c^{2} d + a^{4} c d^{2} + {\left (a b^{3} c^{3} - 2 \, a^{2} b^{2} c^{2} d + a^{3} b c d^{2}\right )} x^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(3/2)/(d*x^2+c),x, algorithm="fricas")

[Out]

[1/4*(4*(b^2*c^2 - a*b*c*d)*sqrt(b*x^2 + a)*x - (a*b*d*x^2 + a^2*d)*sqrt(b*c^2 - a*c*d)*log(((8*b^2*c^2 - 8*a*
b*c*d + a^2*d^2)*x^4 + a^2*c^2 + 2*(4*a*b*c^2 - 3*a^2*c*d)*x^2 + 4*((2*b*c - a*d)*x^3 + a*c*x)*sqrt(b*c^2 - a*
c*d)*sqrt(b*x^2 + a))/(d^2*x^4 + 2*c*d*x^2 + c^2)))/(a^2*b^2*c^3 - 2*a^3*b*c^2*d + a^4*c*d^2 + (a*b^3*c^3 - 2*
a^2*b^2*c^2*d + a^3*b*c*d^2)*x^2), 1/2*(2*(b^2*c^2 - a*b*c*d)*sqrt(b*x^2 + a)*x + (a*b*d*x^2 + a^2*d)*sqrt(-b*
c^2 + a*c*d)*arctan(1/2*sqrt(-b*c^2 + a*c*d)*((2*b*c - a*d)*x^2 + a*c)*sqrt(b*x^2 + a)/((b^2*c^2 - a*b*c*d)*x^
3 + (a*b*c^2 - a^2*c*d)*x)))/(a^2*b^2*c^3 - 2*a^3*b*c^2*d + a^4*c*d^2 + (a*b^3*c^3 - 2*a^2*b^2*c^2*d + a^3*b*c
*d^2)*x^2)]

________________________________________________________________________________________

giac [A]  time = 0.62, size = 107, normalized size = 1.35 \[ -\frac {\sqrt {b} d \arctan \left (-\frac {{\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} d + 2 \, b c - a d}{2 \, \sqrt {-b^{2} c^{2} + a b c d}}\right )}{\sqrt {-b^{2} c^{2} + a b c d} {\left (b c - a d\right )}} + \frac {b x}{{\left (a b c - a^{2} d\right )} \sqrt {b x^{2} + a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(3/2)/(d*x^2+c),x, algorithm="giac")

[Out]

-sqrt(b)*d*arctan(-1/2*((sqrt(b)*x - sqrt(b*x^2 + a))^2*d + 2*b*c - a*d)/sqrt(-b^2*c^2 + a*b*c*d))/(sqrt(-b^2*
c^2 + a*b*c*d)*(b*c - a*d)) + b*x/((a*b*c - a^2*d)*sqrt(b*x^2 + a))

________________________________________________________________________________________

maple [B]  time = 0.02, size = 618, normalized size = 7.82 \[ -\frac {d \ln \left (\frac {\frac {2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {2 a d -2 b c}{d}+2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} b +\frac {2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}}{x -\frac {\sqrt {-c d}}{d}}\right )}{2 \sqrt {-c d}\, \left (a d -b c \right ) \sqrt {\frac {a d -b c}{d}}}+\frac {d \ln \left (\frac {-\frac {2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {2 a d -2 b c}{d}+2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} b -\frac {2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}}{x +\frac {\sqrt {-c d}}{d}}\right )}{2 \sqrt {-c d}\, \left (a d -b c \right ) \sqrt {\frac {a d -b c}{d}}}-\frac {b x}{2 \left (a d -b c \right ) \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} b +\frac {2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}\, a}-\frac {b x}{2 \left (a d -b c \right ) \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} b -\frac {2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}\, a}+\frac {d}{2 \sqrt {-c d}\, \left (a d -b c \right ) \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} b +\frac {2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}}-\frac {d}{2 \sqrt {-c d}\, \left (a d -b c \right ) \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} b -\frac {2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right ) b}{d}+\frac {a d -b c}{d}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^2+a)^(3/2)/(d*x^2+c),x)

[Out]

1/2/(-c*d)^(1/2)/(a*d-b*c)*d/((x-(-c*d)^(1/2)/d)^2*b+2*(-c*d)^(1/2)*(x-(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2)-
1/2/(a*d-b*c)/a/((x-(-c*d)^(1/2)/d)^2*b+2*(-c*d)^(1/2)*(x-(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2)*x*b-1/2/(-c*d
)^(1/2)/(a*d-b*c)*d/((a*d-b*c)/d)^(1/2)*ln((2*(-c*d)^(1/2)*(x-(-c*d)^(1/2)/d)*b/d+2*(a*d-b*c)/d+2*((a*d-b*c)/d
)^(1/2)*((x-(-c*d)^(1/2)/d)^2*b+2*(-c*d)^(1/2)*(x-(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2))/(x-(-c*d)^(1/2)/d))-
1/2/(-c*d)^(1/2)/(a*d-b*c)*d/((x+(-c*d)^(1/2)/d)^2*b-2*(-c*d)^(1/2)*(x+(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2)-
1/2/(a*d-b*c)/a/((x+(-c*d)^(1/2)/d)^2*b-2*(-c*d)^(1/2)*(x+(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2)*x*b+1/2/(-c*d
)^(1/2)/(a*d-b*c)*d/((a*d-b*c)/d)^(1/2)*ln((-2*(-c*d)^(1/2)*(x+(-c*d)^(1/2)/d)*b/d+2*(a*d-b*c)/d+2*((a*d-b*c)/
d)^(1/2)*((x+(-c*d)^(1/2)/d)^2*b-2*(-c*d)^(1/2)*(x+(-c*d)^(1/2)/d)*b/d+(a*d-b*c)/d)^(1/2))/(x+(-c*d)^(1/2)/d))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{2} + a\right )}^{\frac {3}{2}} {\left (d x^{2} + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^2+a)^(3/2)/(d*x^2+c),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)^(3/2)*(d*x^2 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (b\,x^2+a\right )}^{3/2}\,\left (d\,x^2+c\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x^2)^(3/2)*(c + d*x^2)),x)

[Out]

int(1/((a + b*x^2)^(3/2)*(c + d*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b x^{2}\right )^{\frac {3}{2}} \left (c + d x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**2+a)**(3/2)/(d*x**2+c),x)

[Out]

Integral(1/((a + b*x**2)**(3/2)*(c + d*x**2)), x)

________________________________________________________________________________________